Geschichte Forum
Würden Sie gerne auf diese Nachricht reagieren? Erstellen Sie einen Account in wenigen Klicks oder loggen Sie sich ein, um fortzufahren.

Rätsel mit geschichtlichen Hintergrund

+12
Wittgenstein
Klartext
Anticus
Falk v. K.
Wallenstein
Nepomuk
Tammuz
van Kessel
Moschusochse
Marek1964
Skeptik
Ceres
16 verfasser

Seite 9 von 40 Zurück  1 ... 6 ... 8, 9, 10 ... 24 ... 40  Weiter

Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Mi Okt 19, 2016 7:12 pm

Marek1964 schrieb:Also, ich versuche es mal ohne zu googeln, würde aber sagen, war das nicht der Orden von Bernard Clearvaux, der zu den Kreuzzügen aufforderte?

Du bist nah dran Marek, nenne mir nur noch den Namen.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Ceres Mi Okt 19, 2016 8:39 pm

Steht hiermit Innozenz II. im Zusammenhang? Oder war es evtl. der Papst Eugen III. ?
Ceres
Ceres

Anzahl der Beiträge : 2899
Anmeldedatum : 08.05.16

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Mi Okt 19, 2016 8:40 pm

Ceres schrieb:Steht hiermit Innozenz II. im Zusammenhang ?

Ja auch zum Teil.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik Mi Okt 19, 2016 10:49 pm

Johannes.von.Nepomuk22 schrieb:
Du bist nah dran Marek, nenne mir nur noch den Namen.

Helfe ich Marek hiermit?:

Der Benediktinerorden wurde wohl etwas zu lässig und Bernhard von Clairvaux führte strengere Regeln ein mit dem Zisterzienserorden. Die Moral der Ritter unterstützte er so: "Ein Ritter Christi tötet mit gutem Gewissen; noch ruhiger stirbt er. Wenn er stirbt, nützt er sich selber; wenn er tötet, nützt er Christus".

Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Mi Okt 19, 2016 11:52 pm

Skeptik schrieb:
Johannes.von.Nepomuk22 schrieb:
Du bist nah dran Marek, nenne mir nur noch den Namen.

Helfe ich Marek hiermit?:

Der Benediktinerorden wurde wohl etwas zu lässig und Bernhard von Clairvaux führte strengere Regeln ein mit dem Zisterzienserorden. Die Moral der Ritter unterstützte er so: "Ein Ritter Christi tötet mit gutem Gewissen; noch ruhiger stirbt er. Wenn er stirbt, nützt er sich selber; wenn er tötet, nützt er Christus".

Ja, so hast du dem Marek geholfen und gleichzeitig Gewonnen !

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik Do Okt 20, 2016 8:59 am

Johannes.von.Nepomuk22 schrieb:
Ja, so hast du dem Marek geholfen und gleichzeitig Gewonnen !

Lieber Marek, du brauchst sicher keine weitere Hilfe! Oder?

Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Do Okt 20, 2016 9:20 am

Skeptik schrieb:
Johannes.von.Nepomuk22 schrieb:
Ja, so hast du dem Marek geholfen und gleichzeitig Gewonnen !

Lieber Marek, du brauchst sicher keine weitere Hilfe! Oder?

Jetzt bist du wieder dran, mit der Frage stellen.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik Do Okt 20, 2016 11:29 am

Wer fand vor 101 Jahren nicht nur eine geniale Formel. sondern konnte sie auch noch genial anschaulich erklären: „Wenn man zwei Stunden lang mit einem Mädchen zusammensitzt, meint man, es wäre eine Minute. Sitzt man jedoch eine Minute auf einem heißen Ofen, meint man, es wären zwei Stunden.“

Wie heißt der Mann. Wie heißt die Theorie?

Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Marek1964 Do Okt 20, 2016 11:37 am

Skeptik schrieb:
Johannes.von.Nepomuk22 schrieb:
Ja, so hast du dem Marek geholfen und gleichzeitig Gewonnen !

Lieber Marek, du brauchst sicher keine weitere Hilfe! Oder?

Nein, sicher keine Hilfe, nur etwas mehr Zeit hätte ich gebraucht - aber das macht nichts, im Gegenteil, wenn Du schneller warst, dann umso besser, es soll hier vorangehen und Deine Anmerkungen sind ja auch immer interessant - eröffne doch mal dann und wann auch ein Thema, Skeptik - wäre sicher sonst von Interesse.


Und gerade sehe ich, dass Du ein weiteres Thema eröffnet hast - super.

_________________
An unsere stillen Mitleser: werdet aktiv. Stellt Fragen, eröffnet Threads. Es gibt keine dummen Fragen, nur dumme Antworten. Belebt alte Threads - Geschichte veraltet nie. Ein Forum lebt nur, wenn viele mitmachen. Hier wird niemand niedergemacht - früherer Domänenname war geschichte-forum forums ag
Marek1964
Marek1964
Admin

Anzahl der Beiträge : 2394
Anmeldedatum : 18.01.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Do Okt 20, 2016 12:36 pm

Skeptik schrieb:Wer fand vor 101 Jahren nicht nur eine geniale Formel. sondern konnte sie auch noch genial anschaulich erklären: „Wenn man zwei Stunden lang mit einem Mädchen zusammensitzt, meint man, es wäre eine Minute. Sitzt man jedoch eine Minute auf einem heißen Ofen, meint man, es wären zwei Stunden.“

Wie heißt der Mann. Wie heißt die Theorie?

Albert Einstein.


Wikipedia :
---------------------------
Allgemeine Relativitätstheorie

Die allgemeine Relativitätstheorie (kurz ART) beschreibt die Wechselwirkung zwischen Materie (einschließlich Feldern) einerseits sowie Raum und Zeit andererseits. Sie deutet Gravitation als geometrische Eigenschaft der gekrümmten vierdimensionalen Raumzeit. Die Grundlagen der Theorie wurden maßgeblich von Albert Einstein entwickelt, der den Kern der Theorie am 25. November 1915 der Preußischen Akademie der Wissenschaften vortrug. Zur Beschreibung der gekrümmten Raumzeit bediente er sich der Differentialgeometrie.

Die allgemeine Relativitätstheorie erweitert die spezielle Relativitätstheorie und geht für hinreichend kleine Gebiete der Raumzeit in diese über. Außerdem kann sie als eine Erweiterung des newtonschen Gravitationsgesetzes verstanden werden, weil sie dieses im Grenzfall hinreichend kleiner Massendichten und Geschwindigkeiten liefert. Die allgemeine Relativitätstheorie wurde in zahlreichen Tests experimentell bestätigt, sodass sie als Gravitationstheorie allgemein anerkannt ist. Insbesondere hat sie sich bisher in der von Einstein formulierten Form gegen alle später vorgeschlagenen Alternativen durchsetzen können. Offene Fragen betreffen vor allem die Beziehung zur Quantenmechanik.

Inhaltsverzeichnis

1 Einführung
2 Geschichte
2.1 Verallgemeinerung des Äquivalenzprinzips
2.2 Die Aufstellung der Feldgleichungen
3 Grundlegende Konzepte
3.1 Relativitätsprinzip
3.2 Machsches Prinzip
3.3 Äquivalenzprinzip
3.4 Raumzeitkrümmung
4 Mathematische Beschreibung
4.1 Grundbegriffe
4.2 Einsteinsche Feldgleichungen
4.3 Bewegungsgleichungen
5 Metriken
5.1 Metriken Schwarzer Löcher
5.1.1 Schwarzschild-Metrik
5.1.2 Kerr-Metrik
5.1.3 Reissner-Nordström-Metrik
5.1.4 Kerr-Newman-Metrik
5.2 Sonstige Metriken
5.2.1 Gödel-Metrik
5.2.2 Kruskal-Lösung
5.2.3 Robertson-Walker-Metrik
5.2.4 De-Sitter-Raum
5.2.5 Anti-De-Sitter-Raum
6 Physikalische Effekte
6.1 Gravitative Zeitdilatation und Rotverschiebung
6.2 Lichtablenkung und Lichtverzögerung
6.3 Periheldrehung
6.4 Gravitationswellen
6.5 Schwarze Löcher
6.6 Lense-Thirring-Effekt
6.7 Kosmologie
7 Verhältnis zu anderen Theorien
7.1 Klassische Physik
7.2 Quantenphysik
8 Literatur
9 Weblinks
10 Einzelnachweise

Einführung

Grundlegend für die allgemeine Relativitätstheorie ist eine Wechselwirkung zwischen allen Typen physikalischer Systeme, die Energie und Impuls tragen können („Materie“), und der Raumzeit mit zwei Eigenschaften:

Energie und Impuls der Materie beeinflussen die Geometrie der Raumzeit, in der sie sich befinden. Dieser Einfluss lässt sich über einen allgemeinen Krümmungsbegriff formulieren, und in der ART werden Raum und Zeit durch den Begriff der Raumzeitkrümmung beschrieben.
Materie, auf die keine Kraft ausgeübt wird, bewegt sich in Raum und Zeit entsprechend der klassischen Vorstellung entlang einer Geodäte. Eine Geodäte der Raumzeit ist jedoch meist keine Gerade. Geraden sind Geodäten ungekrümmter Räume, wie des 3-dimensionalen Raumes der klassischen Mechanik. Den Einfluss von Materie auf diese Bewegung, den die klassische Mechanik mithilfe der Gravitation beschreibt, beschreibt die ART ausschließlich über die Geometrie der Raumzeit. Dabei wird eine Bewegung eines Gegenstands entlang eines bestimmten Weges im Raum wie in der speziellen Relativitätstheorie als Weg in den vier Dimensionen der Raumzeit interpretiert und seine Weltlinie genannt.

Die erste Aussage beschreibt eine Wirkung der Materie auf die Raumzeit, die zweite beschreibt die Auswirkung der Raumzeit auf die Bewegung der Materie. Die Anwesenheit von Materie verändert also die geometrischen Verhältnisse der Raumzeit, aus denen sich auch die Bewegungsgleichungen der Materie ergeben. Die ART betrachtet dabei die räumlichen und zeitlichen Koordinaten als gleichberechtigt und behandelt alle zeitlichen Änderungen als geometrisches Problem.
Geschichte
Verallgemeinerung des Äquivalenzprinzips

Das klassische Äquivalenzprinzip, manchmal auch als schwaches Äquivalenzprinzip bezeichnet, geht auf Überlegungen Galileo Galileis (1636/38) und Experimente auf dem Gebiet der Kinematik zurück. Die ursprüngliche Formulierung des Äquivalenzprinzips von Galilei besagt, dass alle Körper unabhängig von ihren Eigenschaften im Vakuum dasselbe Fallverhalten aufweisen. Das heißt, zwei Körper unter Einfluss der Schwerkraft, die den gleichen Ort zu aufeinander folgenden Zeiten verlassen, verhalten sich in dem Sinne identisch, dass sie dieselbe Bahn durchlaufen, unabhängig von allen anderen Eigenschaften der Körper wie chemischer Zusammensetzung, Größe, Form und Masse. Die Einschränkung auf das Vakuum ergibt sich dadurch, dass sonst Reibungseffekte und Auftriebskräfte eine Rolle spielen, die von den Eigenschaften des Gegenstands abhängig sind. Isaac Newton formulierte in seiner Philosophiae Naturalis Principia Mathematica (1687) das Äquivalenzprinzip als Gleichheit von träger Masse und schwerer Masse. Das heißt, dass im Gravitationsgesetz und im Trägheitsgesetz dieselbe Masse vorkommt.

Albert Einstein hielt das Äquivalenzprinzip, das 1900 durch das Eötvös-Experiment bereits mit einer Genauigkeit von 10−9 bestätigt war, für eine entscheidende Eigenschaft der Gravitation. Daher erweiterte Einstein das Prinzip auf nichtmechanische Phänomene und machte es zum Ausgangspunkt seiner Gravitationstheorie.
Die Aufstellung der Feldgleichungen

Die Grundlagen der allgemeinen Relativitätstheorie wurden im Wesentlichen von Albert Einstein entwickelt. Er benutzte die von Carl Friedrich Gauß, Bernhard Riemann, Elwin Bruno Christoffel, Gregorio Ricci-Curbastro und Tullio Levi-Civita entwickelte Differentialgeometrie, wie er sie von Marcel Grossmann, einem befreundeten Mathematiker, lernte. Diese Differentialgeometrie verwendete er, um in der Raumzeit, mit der Hermann Minkowski die spezielle Relativitätstheorie formuliert hatte, Gravitation als Eigenschaft der Maßverhältnisse zu formulieren. Überlegungen von Ernst Mach beeinflussten Einsteins Überzeugung, dass auch bei Gravitation nur Bewegung relativ zu anderen Körpern physikalisch erheblich sei.

Die erste Veröffentlichung, die der allgemeinen Relativitätstheorie zugerechnet werden kann, ist eine 1908 veröffentlichte Arbeit Einsteins über den Einfluss von Gravitation und Beschleunigung auf das Verhalten von Licht in der speziellen Relativitätstheorie. In dieser Arbeit formuliert er bereits das Äquivalenzprinzip und sagt die gravitative Zeitdilatation und Rotverschiebung sowie die Lichtablenkung durch massive Körper vorher.[1] Der Hauptteil der Theorie wurde aber erst in den Jahren von 1911 bis 1915 von Einstein erarbeitet. Den Beginn seiner Arbeit markiert dabei eine zweite Veröffentlichung zur Wirkung der Gravitation auf Licht im Jahr 1911, in der Einstein seine Veröffentlichung von 1908 aufarbeitet.[2]

Bevor er die Arbeit abschloss, veröffentlichte Einstein 1913 einen Entwurf für die Relativitätstheorie, der bereits eine gekrümmte Raumzeit verwendete.[3] Aufgrund von Problemen mit dem Prinzip der generellen Kovarianz, das sich letztlich doch als richtig erwies, verfolgte Einstein jedoch in der Folgezeit einen falschen Ansatz, bevor er das Problem letztlich 1915 lösen konnte. Er hielt während seiner Arbeit auch Vorträge darüber und tauschte sich mit Mathematikern aus, namentlich mit Marcel Grossmann und David Hilbert.

Im Oktober 1915 veröffentlichte Einstein eine Arbeit über die Periheldrehung des Merkur,[4] in der er noch von falschen Feldgleichungen ausging, welche mit der lokalen Erhaltung von Energie und Impuls nicht verträglich waren. Im November 1915 fand Einstein die richtigen Feldgleichungen und veröffentlichte sie mit den Sitzungsberichten der Preußischen Akademie der Wissenschaften am 25. November 1915 zusammen mit der Berechnung der Periheldrehung des Merkurs und der Lichtablenkung an der Sonne. Hilbert reichte seine Arbeit fünf Tage davor der Göttinger Königlichen Gesellschaft der Wissenschaften zur Veröffentlichung ein. Allerdings enthalten die Korrekturfahnen von Hilberts Arbeit, anders als die später publizierte Version, nicht die Feldgleichungen[5] – die Korrekturfahnen sind allerdings nicht vollständig erhalten.[6] Einsteins späteren Artikel Die Grundlage der allgemeinen Relativitätstheorie kann man als ersten Übersichtsartikel der ART auffassen. Er wurde am 20. März 1916 in den Annalen der Physik veröffentlicht, zwei Monate nachdem Einstein die von Schwarzschild stammende Lösung seiner Feldgleichungen der Preußischen Akademie der Wissenschaften vorgetragen hatte.[7]

Auf Hilbert geht das Wirkungsfunktional der ART zurück, aus dem er die Feldgleichungen in seinem 1916 veröffentlichten Artikel ableitete.[8]
Grundlegende Konzepte

Die Ausgangspunkte der ART lassen sich als drei grundlegende Prinzipien formulieren: das allgemeine Relativitätsprinzip, das Äquivalenzprinzip und das Machsche Prinzip.[9]

Die Theorie folgt nicht zwingend aus diesen Prämissen, und zumindest beim Machschen Prinzip ist unklar, ob die ART es überhaupt erfüllt. Die drei Prinzipien erklären aber, welche physikalischen Probleme Einstein dazu veranlassten, die ART als neue Gravitationstheorie zu formulieren.

Die Beschreibung der Raumzeitkrümmung baut logisch auf dem Äquivalenzprinzip auf, deshalb wird sie in diesem Kapitel ebenfalls behandelt.
Relativitätsprinzip
→ Hauptartikel: Relativitätsprinzip

In der allgemeinen Relativitätstheorie wird ein gegenüber der speziellen Relativitätstheorie erweitertes Relativitätsprinzip angenommen: Die Gesetze der Physik haben nicht nur in allen Inertialsystemen die gleiche Form, sondern auch in Bezug auf alle Koordinatensysteme. Dies gilt für alle Koordinatensysteme, die jedem Ereignis in Raum und Zeit vier Parameter zuweisen, wobei diese Parameter auf kleinen Raumzeitgebieten, die der speziellen Relativitätstheorie gehorchen, hinreichend differenzierbare Funktionen der dort lokal definierbaren kartesischen Koordinaten sind. Diese Forderung an das Koordinatensystem ist nötig, damit die Methoden der Differentialgeometrie für die gekrümmte Raumzeit überhaupt angewendet werden können. Eine gekrümmte Raumzeit ist dabei im Allgemeinen nicht mehr global mit einem kartesischen Koordinatensystem zu beschreiben. Das erweiterte Relativitätsprinzip wird auch allgemeine Koordinaten-Kovarianz genannt.

Die Koordinaten-Kovarianz ist eine Forderung an die Formulierung von Gleichungen (Feldgleichungen, Bewegungsgleichungen), die in der ART Gültigkeit besitzen sollen. Allerdings lässt sich auch die spezielle Relativitätstheorie bereits allgemein kovariant formulieren. So kann beispielsweise selbst ein Beobachter auf einem rotierenden Drehstuhl den Standpunkt vertreten, er selbst sei in Ruhe und der Kosmos rotiere um ihn herum. Dabei entsteht das Paradoxon, dass sich die Sterne und das von ihnen ausgesandte Licht im Koordinatensystem des rotierenden Beobachters rechnerisch mit Überlichtgeschwindigkeit bewegen, was scheinbar der speziellen Relativitätstheorie widerspricht. Die Auflösung dieses Paradoxons ist, dass die allgemein kovariante Beschreibung per Definition lokal ist. Das bedeutet, dass die Konstanz der Lichtgeschwindigkeit nur nahe der Weltlinie des Beobachters gelten muss, was für den rotierenden Beobachter ebenso erfüllt ist, wie für jeden anderen Beobachter. Die kovariant, also im Sinne des allgemeinen Relativitätsprinzips, geschriebenen Gleichungen ergeben für die Sterne also überlichtschnelle Kreisbewegungen, stehen aber dennoch im Einklang mit den Prinzipien der speziellen Relativitätstheorie. Dies wird auch dadurch klar, dass es unmöglich ist, dass ein Beobachter in der Nähe eines Sterns im rotierenden Koordinatensystem ruht und also dem Stern mit Überlichtgeschwindigkeit begegnet. Dieser Beobachter hat also zwangsweise ein anderes Koordinatensystem als der rotierende Beobachter und misst die „richtige“ Lichtgeschwindigkeit.

Obwohl es möglich ist, den Kosmos aus der Sicht eines rotierenden Beobachters korrekt zu beschreiben, sind die Gleichungen eines Bezugssystems, in dem die meisten Objekte ruhen oder sich nur langsam bewegen, meist einfacher. Die Bedingung eines nicht-rotierenden Koordinatensystems für Inertialsysteme und die Unterscheidung in ihrer Betrachtung, den die klassische Physik erfordert, entfällt aber prinzipiell.

Im Fall eines Mehrkörpersystems auf engem Raum ist die Raumzeit hochgradig gekrümmt und die Krümmung in jedem Koordinatensystem auch zeitlich veränderlich. Daher ist von vornherein kein Kandidat für ein ausgezeichnetes Koordinatensystem erkennbar, das sich zur Beschreibung aller Phänomene eignet. Das Relativitätsprinzip besagt für diesen allgemeinen Fall, dass es auch nicht nötig ist, danach zu suchen, weil alle Koordinatensysteme gleichberechtigt sind. Man kann also je nach dem, welches Phänomen man beschreiben will, verschiedene Koordinatensysteme wählen und das rechentechnisch einfachste Modell auswählen.

Daher kann die ART auch auf den klassischen astronomischen Begriff der Scheinbarkeit von Bewegungen verzichten, den das noch in der newtonschen Anschauung verhaftete heliozentrische Weltbild erforderte.
Machsches Prinzip
→ Hauptartikel: Machsches Prinzip

Einstein war bei der Entwicklung der Relativitätstheorie stark von Ernst Mach beeinflusst. Insbesondere die Annahme, dass die Trägheitskräfte eines Körpers nicht von dessen Bewegung relativ zu einem absoluten Raum, sondern von dessen Bewegung relativ zu den anderen Massen im Universum abhängen, welche er als machsches Prinzip bezeichnete, war für Einstein eine wichtige Arbeitsgrundlage. Die Trägheitskräfte sind nach dieser Auffassung also Resultat der Wechselwirkung der Massen untereinander, und ein unabhängig von diesen Massen existierender Raum wird verneint. Demnach sollten beispielsweise Fliehkräfte rotierender Körper verschwinden, wenn das restliche Universum „mitrotiert“.

Diese von Einstein bevorzugte, recht allgemeine Formulierung des machschen Prinzips ist jedoch nur eine von vielen, nicht äquivalenten Formulierungen. Daher ist das machsche Prinzip und sein Verhältnis zur ART bis heute umstritten. Beispielsweise fand Kurt Gödel 1949 ein nach den Gesetzen der ART mögliches Universum, das so genannte Gödel-Universum, welches manchen spezifischen Formulierungen des machschen Prinzips widerspricht. Es gibt jedoch andere spezifische Formulierungen des Prinzips, denen das Gödel-Universum nicht zuwiderläuft. Astronomische Beobachtungen zeigen allerdings, dass sich das reale Universum stark von Gödels Modell unterscheidet.

Einstein sah den Lense-Thirring-Effekt, den die ART vorhersagte, als eine Bestätigung seiner Version des machschen Prinzips. Folge dieses Effektes ist, dass Bezugsysteme innerhalb einer rotierenden massebehafteten Hohlkugel eine Präzession erfahren, was Einstein so interpretierte, dass die Masse der Kugel Einfluss auf die Trägheitskräfte hat. Da jedoch bei der Rechnung und der Interpretation ein „ruhendes“ Bezugsystem in Form eines Fixsternhimmels angenommen wurde, ist auch diese Interpretation umstritten.

Die allgemein gehaltene Version des machschen Prinzips, die Einstein formulierte, ist also zu ungenau, um entscheiden zu können, ob sie mit der ART vereinbar ist.
Äquivalenzprinzip
→ Hauptartikel: Äquivalenzprinzip (Physik)
Im freien Fall (rechts unten) sind die physikalischen Phänomene genauso wie in Schwerelosigkeit (Mitte links). Ein Beobachter kann mit lokalen Mitteln nicht zwischen wirkender Gravitation und einer Beschleunigung des Raums, in dem er sich befindet, unterscheiden. Licht (rot) breitet sich auf gekrümmten Bahnen aus. Objekte werden in die gleiche Richtung gezogen.

Bereits in der klassischen Mechanik war das Prinzip der Äquivalenz von träger und schwerer Masse bekannt. Es besagt in seiner klassischen Form, die man auch als schwaches Äquivalenzprinzip bezeichnet, dass die schwere Masse, die angibt, wie stark die durch ein Gravitationsfeld an einem Körper erzeugte Kraft ist, und die träge Masse, die durch das Kraftgesetz festlegt, wie stark ein Körper durch eine Kraft beschleunigt wird, äquivalent sind. Dies bedeutet insbesondere, dass jeder Körper sich unabhängig von seiner Masse in einem Schwerefeld (bei Abwesenheit anderer Kräfte) gleich bewegt. (Geladene Körper sind davon aufgrund der Synchrotronstrahlung ausgeschlossen.) So fallen beispielsweise im Vakuum alle (ungeladenen) Körper gleich schnell, und die geostationäre Bahn ist für schwere Satelliten wie für leichte Satelliten stets dieselbe. Folge des klassischen Äquivalenzprinzips ist, dass ein Beobachter in einem geschlossenen Labor, ohne Information von außen, aus dem mechanischen Verhalten von Gegenständen im Labor nicht ablesen kann, ob er sich in Schwerelosigkeit oder im freien Fall befindet.

Dieses Prinzip wurde von Einstein verallgemeinert: Das einsteinsche starke Äquivalenzprinzip besagt, dass ein Beobachter in einem geschlossenen Labor ohne Wechselwirkung mit der Umgebung durch überhaupt kein Experiment feststellen kann, ob er sich in der Schwerelosigkeit fernab von Massen befindet oder im freien Fall nahe einer Masse. Das bedeutet insbesondere, dass auch ein Lichtstrahl für einen Beobachter im freien Fall nicht – wie in einem beschleunigten Bezugssystem – parabelförmig gekrümmt ist. Andererseits muss ein Beobachter, der im Gravitationsfeld ruht, z. B. indem er auf der Erdoberfläche steht, einen Lichtstrahl gekrümmt wahrnehmen, da er die ganze Zeit gegen den freien Fall nach oben beschleunigt wird.

Es muss allerdings beachtet werden, dass dieses Prinzip nur lokal gilt:

So wird ein „unten“ (näher am Gravizentrum) befindliches Objekt stärker angezogen als ein weiter „oben“ befindliches. Ist der frei fallende Raum in vertikaler Richtung groß genug, so wird der Beobachter daher feststellen, dass Objekte, die sich weiter oben befinden, von denen, die sich weiter unten befinden, entfernen.
Umgekehrt wird sich bei ausreichender horizontaler Ausdehnung des Raumes die Richtung der Anziehungskraft auf zwei horizontal voneinander entfernte Objekte merklich unterscheiden, da sie beide in Richtung des Gravitationszentrums beschleunigt werden. Daher wird der frei fallende Beobachter feststellen, dass weit auseinander gelegene Körper sich aufeinander zubewegen. Ein ausgedehnter Körper wird also eine Kraft erfahren, die ihn in eine Richtung auseinanderzieht und in den dazu senkrechten Richtungen zusammendrückt.

In der ART folgt das Äquivalenzprinzip direkt aus der Beschreibung der Bewegung von Körpern: Da sich alle Körper entlang Geodäten der Raumzeit bewegen, kann ein Beobachter, der sich entlang einer Geodäte bewegt, nur dann eine Krümmung der Raumzeit feststellen, die er als Gravitationsfeld interpretieren könnte, wenn das von ihm beobachtbare Raumzeitstück maßgeblich gekrümmt ist. In diesem Fall beobachtet er die oben genannten Gezeitenkräfte als eine relative Annäherung oder Entfernung benachbarter frei fallender Körper. Die Krümmung sorgt auch dafür, dass geladene Körper nichtlokal mit ihrem eigenen Feld wechselwirken und daher das Äquivalenzprinzip auf diese prinzipiell nicht anwendbar ist, da ihr elektromagnetisches Feld grundsätzlich langreichweitig ist.[10]
Raumzeitkrümmung
Siehe auch: Raumkrümmung
Paralleltransporte nahe einer massiven Kugel.
Blaue Pfeile stellen Paralleltransporte im Raum entlang der x-Achse dar.
Rote Pfeile stellen die Bewegung im Raum bei einem Paralleltransport entlang der Zeitachse dar, der einem freien Fall entspricht.
Die Längen der gleichartigen Paralleltransporte sind dabei jeweils gleich, also Δx1 = Δx2 und Δt1 = Δt2. Beim ersten, oberen Weg wird zuerst der Transport in x-Richtung ausgeführt und dann der Transport in Zeitrichtung. Beim zweiten, unteren Weg wird die Reihenfolge der Paralleltransporte vertauscht. Der grüne Doppelpfeil illustriert die verschiedenen Endpunkte bei Vertauschung der Paralleltransporte.

Die Krümmung der Raumzeit, die in diesem Abschnitt erläutert wird, ist kein unabhängiges Konzept, sondern eine Folgerung aus dem Äquivalenzprinzip. Mit Hilfe des Äquivalenzprinzips lässt sich daher auch der Begriff der Raumzeitkrümmung anschaulich erläutern. Dafür muss zunächst der Begriff des Paralleltransports entlang der Zeitachse erklärt werden.

Ein Paralleltransport ist eine Verschiebung in einer Richtung, bei der die Ausrichtung beibehalten wird, also ein lokales Koordinatensystem mitgeführt wird. Eine Verschiebung in Raumrichtung ist in einer Raumzeit ohne Massen anschaulich verständlich. Die Definition der Zeit ist nach der speziellen Relativitätstheorie von der Bewegung des Koordinatensystems abhängig. Eine konstante Zeitrichtung ist dabei nur für unbeschleunigte Koordinatensysteme gegeben. In diesem Fall bedeutet eine Verschiebung in Zeitrichtung in einer Raumzeit ohne Massen, dass ein Gegenstand relativ zum Koordinatensystem ruht. Er bewegt sich dann entlang der Zeitachse dieses Koordinatensystems.

Nach dem Äquivalenzprinzip lässt sich damit der Paralleltransport entlang der Zeitachse in einem Gravitationsfeld verstehen. Das Äquivalenzprinzip besagt, dass ein frei fallender Beobachter in einem Gravitationsfeld äquivalent zu einem unbeschleunigten Beobachter fernab eines Gravitationsfeldes ist. Daher entspricht ein Paralleltransport entlang der Zeitachse um ein Zeitintervall t einem freien Fall der Dauer t. Das bedeutet, dass eine Parallelverschiebung in der Zeit auch eine Bewegung im Raum zur Folge hat. Da aber die Richtung des freien Falls vom Ort abhängig ist, macht es nun einen Unterschied, ob ein Beobachter zuerst im Raum und dann in der Zeit parallel verschoben wird oder umgekehrt. Man sagt, der Paralleltransport ist nicht kommutativ, das heißt die Reihenfolge der Transporte ist bedeutsam.

Bisher wurden große Verschiebungen betrachtet, bei denen offensichtlich die Reihenfolge der Paralleltransporte bedeutend ist. Es ist jedoch sinnvoll, Aussagen über beliebig kleine Bereiche der Raumzeit machen zu können, um auch für kurze Zeiten und Strecken das Verhalten von Körpern beschreiben zu können. Wenn man die Paralleltransporte über immer kürzere Distanzen und Zeiten vornimmt, sind die Endpunkte für verschiedene Reihenfolgen der Transporte weiterhin verschieden, wobei der Unterschied sich aber entsprechend verkleinert. Mit Hilfe von Ableitungen lässt sich ein infinitesimal kleiner Paralleltransport an einem Punkt beschreiben. Das Maß für die Abweichung der Endpunkte bei Vertauschung der Reihenfolge zweier Paralleltransporte ist dann durch den so genannten Krümmungstensor gegeben.

Durch die Raumzeitkrümmung lassen sich auch die oben erwähnten Gezeitenkräfte erklären. Zwei Kugeln im freien Fall in einem frei fallenden Labor bewegen sich beide entlang der Zeitachse, also auf zueinander parallelen Linien. Die Tatsache, dass die Paralleltransporte nicht kommutativ sind, ist äquivalent dazu, dass parallele Linien keinen konstanten Abstand haben. Die Bahnen der Kugeln können sich also einander nähern oder voneinander entfernen. Im Erdschwerefeld ist die Annäherung bei sehr langem Fall nur sehr klein. Wenn die Zeit nun ähnlich wie eine Raumdimension behandelt wird, werden Zeitintervalle mit der Lichtgeschwindigkeit multipliziert. Die Raumzeitkrümmung ist also winzig klein und nur für lange Falldauern überhaupt erkennbar. Dies ist vergleichbar mit einer Wäscheleine, die von der Seite betrachtet gerade erscheint, aber wenn man an ihr entlangsieht, eine Krümmung offenbart.

Zur Beschreibung der Krümmung ist es also nicht nötig, die Raumzeit in einen höherdimensionalen Raum einzubetten. Die Krümmung ist nicht als Krümmung in eine fünfte Dimension zu verstehen oder als eine Krümmung des Raumes in die vierte Dimension, sondern als Nichtkommutativität von Paralleltransporten. Außerdem ist es für diese Darstellung notwendig, Raum und Zeit als vierdimensionale Raumzeit zu behandeln, denn der dreidimensionale Raum allein braucht nicht gekrümmt zu sein. Raum- und Zeitkoordinaten sind also weitgehend analog; es besteht nur ein subtiler mathematischer Unterschied in der positiven bzw. negativen Signatur der Zeit- bzw. der Raumkoordinaten, ähnlich wie man nach Gauß zwischen „reellen“ und „imaginären“ Zahlen unterscheidet.[11]

In welcher Weise die Raumzeit gekrümmt wird, wird in der ART durch die einsteinschen Feldgleichungen festgelegt.
Mathematische Beschreibung
Grundbegriffe

Die mathematische Beschreibung der Raumzeit und ihrer Krümmung erfolgt mit den Methoden der Differentialgeometrie, die die Euklidische Geometrie des uns vertrauten „flachen“ dreidimensionalen Raumes der klassischen Mechanik ablöst. Die Differentialgeometrie verwendet zur Beschreibung gekrümmter Räume, wie der Raumzeit der ART, so genannte Mannigfaltigkeiten. Wichtige Eigenschaften werden mit so genannten Tensoren beschrieben, die Abbildungen auf der Mannigfaltigkeit darstellen.

Die gekrümmte Raumzeit wird als Lorentz-Mannigfaltigkeit beschrieben.
Eine besondere Bedeutung kommt dem metrischen Tensor zu. Wenn man in den metrischen Tensor zwei Vektorfelder einsetzt, erhält man für jeden Punkt der Raumzeit eine reelle Zahl. In dieser Hinsicht kann man den metrischen Tensor als ein verallgemeinertes, punktabhängiges Skalarprodukt für Vektoren der Raumzeit verstehen. Mit seiner Hilfe werden Abstand und Winkel definiert und er wird daher kurz als Metrik bezeichnet.
Ebenso bedeutend ist der riemannsche Krümmungstensor zur Beschreibung der Krümmung der Mannigfaltigkeit, der eine Kombination von ersten und zweiten Ableitungen des metrischen Tensors darstellt. Wenn ein Tensor in irgendeinem Koordinatensystem in einem Punkt nicht null ist, kann man kein Koordinatensystem finden, sodass er in diesem Punkt null wird. Dies gilt dementsprechend auch für den Krümmungstensor. Umgekehrt ist der Krümmungstensor in allen Koordinatensystemen null, wenn er in einem Koordinatensystem null ist. Man kann also unabhängig vom Koordinatensystem entscheiden, ob eine Mannigfaltigkeit an einem bestimmten Punkt gekrümmt ist oder nicht.
Die maßgebliche Größe zur Beschreibung von Energie und Impuls der Materie ist der Energie-Impuls-Tensor. Wie dieser Tensor die Krümmungseigenschaften der Raumzeit bestimmt, zeigt der folgende Abschnitt.

Einsteinsche Feldgleichungen
→ Hauptartikel: Einsteinsche Feldgleichungen

Die einsteinschen Feldgleichungen stellen einen Zusammenhang zwischen einigen Krümmungseigenschaften der Raumzeit und dem Energie-Impuls-Tensor her, der die lokale Massendichte beziehungsweise über E = m c 2 {\displaystyle E=mc^{2}} E=mc^{2} die Energiedichte enthält und damit die relevanten Eigenschaften der Materie charakterisiert.

Diese Grundgleichungen der allgemeinen Relativitätstheorie enthalten 10 unabhängige Komponenten, ähnlich wie eine Vektorgleichung des euklidischen Raumes aus 3 Komponenten besteht:

R μ ν − R 2 g μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{\frac {R}{2}}\,g_{\mu \nu }+\Lambda \,g_{\mu \nu }={\frac {8\pi G}{c^{4}}}\,T_{\mu \nu }} R_{{\mu \nu }}-{\frac {R}{2}}\,g_{{\mu \nu }}+\Lambda \,g_{{\mu \nu }}={\frac {8\pi G}{c^{4}}}\,T_{{\mu \nu }}

Dabei ist R μ ν {\displaystyle R_{\mu \nu }} R_{{\mu \nu }} der Ricci-Krümmungstensor, R {\displaystyle R} R der Ricci-Krümmungsskalar, g μ ν {\displaystyle g_{\mu \nu }} g_{\mu\nu} der metrische Tensor, Λ {\displaystyle \Lambda } \Lambda die kosmologische Konstante,[12] c {\displaystyle c} c die Lichtgeschwindigkeit, G {\displaystyle G} G die Gravitationskonstante und T μ ν {\displaystyle T_{\mu \nu }} T_{\mu\nu} der Energie-Impuls-Tensor. Da alle Tensoren in dieser Gleichung symmetrisch sind (z. B. R μ ν = R ν μ {\displaystyle R_{\mu \nu }=R_{\nu \mu }} R_{{\mu \nu }}=R_{{\nu \mu }}), sind nur 10 dieser 16 Gleichungen unabhängig voneinander.

Das Ziel ist es, die Komponenten des Energie-Impuls-Tensors auf der rechten Seite der Gleichungen vorzugeben und die Feldgleichungen dann zu verwenden, um die Metrik zu bestimmen. Der Ausdruck auf der linken Seite der Gleichung besteht aus Größen, die vom Krümmungstensor hergeleitet sind. Sie enthalten daher Ableitungen der gesuchten Metrik. Man erhält also 10 Differentialgleichungen für die Komponenten der Metrik. Die Metrik und ihre Ableitungen finden sich jedoch meist auch auf der rechten Seite der Gleichungen im Energie-Impulstensor. Erschwerend kommt hinzu, dass die Summe zweier Lösungen im Allgemeinen keine Lösung der Feldgleichungen ist, die Lösungen sind also nicht superponierbar. Dies liegt an der Nichtlinearität der Feldgleichungen, die als ein Hauptkennzeichen der ART gilt. Aufgrund dieser Komplexität der Gleichungen ist es oft nicht möglich, exakte Lösungen für die Feldgleichungen zu finden. In solchen Fällen können zum Teil Verfahren zum Finden einer Näherungslösung verwendet werden.

In den Feldgleichungen steht nicht der Krümmungstensor, sondern nur der aus ihm abgeleitete Ricci-Krümmungstensor und der Ricci-Krümmungsskalar. Diese beiden Summanden werden zusammengefasst auch als Einsteintensor G μ ν {\displaystyle G_{\mu \nu }} G_{\mu\nu} bezeichnet, wobei dieser nicht alle Informationen über die Krümmung der Raumzeit enthält. Ein Teil der Raumzeitkrümmung, die so genannte Weyl-Krümmung, ist also nicht direkt vom Energie-Impuls-Tensor und damit von der Massen- und Energiedichte abhängig. Allerdings ist der Weyl-Krümmungstensor nicht frei wählbar, da er aufgrund der geometrischen Bianchi-Identitäten teilweise durch den Ricci-Krümmungstensor festgelegt wird.[13]

Einstein glaubte zunächst, dass das Universum seine Größe nicht mit der Zeit ändere, daher führte er die kosmologische Konstante Λ {\displaystyle \Lambda } \Lambda ein, um ein solches Universum theoretisch zu ermöglichen. Das Gleichgewicht, das er damit erreichte, erwies sich jedoch als instabiles Gleichgewicht. Λ {\displaystyle \Lambda } \Lambda hat formal den Stellenwert einer Art Integrationskonstanten, und hat daher zunächst keinen bestimmten Zahlenwert, der direkt aus der Theorie folgen würde. Sie muss also experimentell bestimmt werden.[14] Eine alternative Sicht auf die kosmologische Konstante fasst den entsprechenden Term als Teil des Energie-Impuls-Tensors auf und setzt T Λ μ ν = c 4 8 π G Λ g μ ν {\displaystyle T_{\Lambda }^{\mu \nu }={\frac {c^{4}}{8\pi G}}\Lambda \,g^{\mu \nu }} T_{{\Lambda }}^{{\mu \nu }}={\frac {c^{4}}{8\pi G}}\Lambda \,g^{{\mu \nu }}. Das bedeutet, dass die kosmologische Konstante sich als ideale Flüssigkeit mit negativem Druck darstellt und als außergewöhnliche Form von Materie oder Energie aufgefasst wird. In der heutigen Kosmologie hat sich in diesem Zusammenhang die Bezeichnung „dunkle Energie“ durchgesetzt.

Die Feldgleichungen geben an, wie der Materie- und Energieinhalt sich auf die Krümmung der Raumzeit auswirkt. Sie enthalten jedoch auch alle Informationen über die Auswirkung der Raumzeitkrümmung auf die Dynamik von Teilchen und Feldern, also über die andere Richtung der Wechselwirkung. Dennoch verwendet man nicht direkt die Feldgleichungen, um die Dynamik von Teilchen oder Feldern zu beschreiben, sondern leitet dazu die Bewegungsgleichungen her. Die Bewegungsgleichungen sind also „technisch“ von Bedeutung, obwohl ihr Informationsinhalt konzeptionell bereits in den Feldgleichungen enthalten ist.

Eine besonders elegante Herleitung der einsteinschen Feldgleichung bietet das Prinzip der kleinsten Wirkung, das auch in der newtonschen Mechanik eine wichtige Rolle spielt. Eine geeignete Formel für die Wirkung, deren Variation im Rahmen der Variationsrechnung dabei zu diesen Feldgleichungen führt, ist die Einstein-Hilbert-Wirkung, welche erstmals von David Hilbert angegeben wurde.
Bewegungsgleichungen

Um die Bewegungsgleichungen formulieren zu können, muss eine beliebige Weltlinie eines Körpers parametrisiert werden. Das kann geschehen, indem ein Nullpunkt und eine positive Richtung festgelegt werden und dann jedem Punkt auf der Weltlinie die Bogenlänge vom Nullpunkt bis zu diesem Punkt mit dem entsprechenden Vorzeichen zugeordnet wird. So stellt man sicher, dass jeder Punkt auf der Weltlinie eindeutig bestimmt ist. Eine sehr ähnliche Parametrisierung ist die Parametrisierung nach der Eigenzeit. Die beiden sind identisch, wenn man die Gleichungen durch Ignorieren aller c vereinfacht, indem man also formal die Lichtgeschwindigkeit c = 1 {\displaystyle c=1} c=1 setzt. Die folgenden Formeln sind in Bogenlängenparametrisierung zu verstehen.

Im Folgenden bezeichnet der Begriff „Kraft“ nie die Gravitation, sondern zum Beispiel elektromagnetische oder mechanische Kräfte, da die Gravitation als geometrischer Effekt aufgefasst wird. Betrachtet man nun einen Körper, auf den eine Kraft K μ {\displaystyle K^{\mu }\ } K^{{\mu }}\ wirkt, so lauten die Bewegungsgleichungen

m x ¨ μ + m Γ λ ν μ x ˙ λ x ˙ ν = K μ {\displaystyle m{\ddot {x}}^{\mu }+m\Gamma _{\lambda \nu }^{\mu }{\dot {x}}^{\lambda }{\dot {x}}^{\nu }=K^{\mu }} m{\ddot {x}}^{{\mu }}+m\Gamma _{{\lambda \nu }}^{{\mu }}{\dot {x}}^{{\lambda }}{\dot {x}}^{{\nu }}=K^{{\mu }}

Für den Fall, dass auf einen Körper keine Kraft wirkt, wird seine Weltlinie durch die Geodätengleichungen der gekrümmten Raumzeit beschrieben. Man erhält sie, indem man im obigen Kraftgesetz die Kraft K μ = 0 {\displaystyle K^{\mu }\ =0} K^{{\mu }}\ =0 setzt

x ¨ μ + Γ λ ν μ x ˙ λ x ˙ ν = 0 {\displaystyle {\ddot {x}}^{\mu }+\Gamma _{\lambda \nu }^{\mu }{\dot {x}}^{\lambda }{\dot {x}}^{\nu }=0} {\ddot {x}}^{{\mu }}+\Gamma _{{\lambda \nu }}^{{\mu }}{\dot {x}}^{{\lambda }}{\dot {x}}^{{\nu }}=0

Dabei ist m die Masse des Körpers und ( x μ ) = ( x 0 , x 1 , x 2 , x 3 ) {\displaystyle \left(x^{\mu }\right)=(x^{0},\,x^{1},\,x^{2},\,x^{3})} \left(x^{\mu }\right)=(x^{0},\,x^{1},\,x^{2},\,x^{3}) sind die vier Raumzeit-Komponenten der Weltlinie des Körpers; x 0 {\displaystyle x^{0}} x^{0} steht für die Zeit-Komponente. Punkte über den Größen sind Ableitungen nach der Bogenlänge und nicht nach der Zeitkomponente x 0 {\displaystyle x^{0}} x^{0}. Γ λ ν μ = g μ ρ 2 ( ∂ λ g ν ρ + ∂ ν g λ ρ − ∂ ρ g λ ν ) {\displaystyle \textstyle \Gamma _{\lambda \nu }^{\mu }={\frac {g^{\mu \rho }}{2}}\left(\partial _{\lambda }g_{\nu \rho }+\partial _{\nu }g_{\lambda \rho }-\partial _{\rho }g_{\lambda \nu }\right)} \textstyle \Gamma _{{\lambda \nu }}^{{\mu }}={\frac {g^{{\mu \rho }}}{2}}\left(\partial _{{\lambda }}g_{{\nu \rho }}+\partial _{{\nu }}g_{{\lambda \rho }}-\partial _{{\rho }}g_{{\lambda \nu }}\right) ist ein Christoffelsymbol, das die Abhängigkeit des metrischen Tensors vom Raumzeitpunkt, also die Raumzeitkrümmung, charakterisiert. Die g μ ρ {\displaystyle g^{\mu \rho }} g^{{\mu \rho }} sind Komponenten des kometrischen Tensors, der invers zum metrischen Tensor g ν ρ {\displaystyle g_{\nu \rho }} g_{{\nu \rho }} ist.

In der Formel werden außerdem Kurzschreibweisen verwendet: Für die Differentiale ∂ μ := ∂ ∂ x μ {\displaystyle \textstyle \partial _{\mu }:={\frac {\partial }{\partial x^{\mu }}}} \textstyle \partial _{{\mu }}:={\frac {\partial }{\partial x^{{\mu }}}}, sowie die Summenkonvention, die besagt, dass über Indizes, die jeweils einmal oben und einmal unten stehend auftauchen, automatisch von 0 bis 3 summiert wird.

Das Kraftgesetz ist eine Verallgemeinerung des klassischen Aktionsprinzips ( K → = m x → ¨ {\displaystyle {\vec {K}}=m{\ddot {\vec {x}}}} {\vec {K}}=m{\ddot {{\vec {x}}}}) auf vier Dimensionen einer gekrümmten Raumzeit. Die Gleichungen lassen sich erst lösen, wenn der metrische Tensor bekannt ist. Umgekehrt ist der metrische Tensor erst bekannt, wenn die Gleichungen für alle Bahnen gelöst sind. Aus dieser intrinsischen Forderung der Selbstkonsistenz ergibt sich u. a. bereits die Schwierigkeit der Theorie als notwendige Eigenschaft.

Prinzipiell können nun die Bewegungsgleichungen für eine Teilchenwolke und die einsteinschen Feldgleichungen als Gleichungssystem betrachtet werden, das die Dynamik einer Wolke massiver Teilchen beschreibt. Aufgrund der oben erwähnten Schwierigkeiten bei der Lösung der Feldgleichungen ist dies jedoch praktisch nicht durchführbar, sodass für Mehrteilchensysteme immer mit Näherungen gerechnet wird.

Die Kräfte, die auf einen Körper wirken, berechnen sich dabei im Allgemeinen etwas anders als in der speziellen Relativitätstheorie. Da die Formeln in der ART koordinatenkovariant geschrieben werden müssen, ist in den Formeln für die Kräfte, zum Beispiel in den Maxwell-Gleichungen, anstelle der partiellen Ableitung nach Raumzeitkomponenten nun die kovariante Ableitung zu verwenden. Da die Ableitungen nach Raumzeitkomponenten die Änderungen einer Größe beschreiben, heißt das, dass die Änderungen aller Felder (also ortsabhängige Größen) nun in der gekrümmten Raumzeit beschrieben werden müssen. Die Maxwellgleichungen ergeben sich damit zu:

D μ F μ ν = 4 π J ν D μ F ν ρ + D ν F ρ μ + D ρ F μ ν = ∂ μ F ν ρ + ∂ ν F ρ μ + ∂ ρ F μ ν = 0 {\displaystyle D_{\mu }F^{\mu \nu }=4\pi J^{\nu }\qquad \qquad D_{\mu }F_{\nu \rho }+D_{\nu }F_{\rho \mu }+D_{\rho }F_{\mu \nu }=\partial _{\mu }F_{\nu \rho }+\partial _{\nu }F_{\rho \mu }+\partial _{\rho }F_{\mu \nu }=0} D_{{\mu }}F^{{\mu \nu }}=4\pi J^{{\nu }}\qquad \qquad D_{{\mu }}F_{{\nu \rho }}+D_{{\nu }}F_{{\rho \mu }}+D_{{\rho }}F_{{\mu \nu }}=\partial _{{\mu }}F_{{\nu \rho }}+\partial _{{\nu }}F_{{\rho \mu }}+\partial _{{\rho }}F_{{\mu \nu }}=0

Die Verwendung der kovarianten Ableitungen D μ {\displaystyle D_{\mu }\ } D_{{\mu }}\ betrifft also nur die inhomogenen Maxwellgleichungen, während die homogenen Gleichungen sich gegenüber der klassischen Form nicht ändern. Die Definitionen der kovarianten Ableitungen von Tensoren sind dem Artikel Christoffelsymbole zu entnehmen.
Metriken

Nach der Veröffentlichung der Allgemeinen Relativitätstheorie haben sich innerhalb der nächsten Jahrzehnte einige Lösungsansätze bzw. Metriken mit neuen Koordinaten entwickelt, die teilweise heute noch benutzt werden.
Metriken Schwarzer Löcher
Schwarzschild-Metrik

Die Schwarzschild-Metrik war eine der ersten Metriken, die nach der Veröffentlichung der Allgemeinen Relativitätstheorie von Karl Schwarzschild entwickelt wurde. Sie führt die Schwarzschild-Koordinaten ein, mit denen sich die Eigenschaften der Raumzeit gut beschreiben lässt. Mit dieser Lösung konnte Schwarzschild zum ersten Mal das Gravitationsfeld einer nicht-rotierenden Kugel beschreiben, deren Masse gleichmäßig verteilt war. Hierbei unterscheidet man aber die innere und die äußere Schwarzschild-Lösung, die eine Vakuumlösung ist, bei der der Energie-Impuls-Tensor verschwindet. Die äußeren Schwarzschild-Koordinaten lassen allerdings Koordinatensingularitäten zu, die bei der inneren Lösung nicht mehr existieren. Die Schwarzschild-Metrik wird somit als erste Beschreibung eines Schwarzen Loches angenommen.
Kerr-Metrik

Die Kerr-Metrik beschreibt rotierende, ungeladene Objekte in der Raumzeit, ist also gut zur Beschreibung rotierender Schwarzer Löcher geeignet. Sie wurde nach Roy Kerr benannt, der sie 1963 entwickelt hatte. In dieser Metrik gibt es zwei singuläre Raumzeitregionen bei rotierenden Schwarzen Löchern, in der Mitte liegt die Ergosphäre (detaillierter beschrieben in Kerr-Metrik). Das Besondere an dieser Metrik ist, dass die Singularität bei r = 0 {\displaystyle r=0} r=0 eines Schwarzen Loches ringförmig ist.
Reissner-Nordström-Metrik

Die Reissner-Nordström-Metrik beschreibt elektrisch geladene, statische Schwarze Löcher. Die Form seiner Linienelemente ist ähnlich denen der Schwarzschild-Metrik. Hierbei existiert nun ein Parameter Q, der die elektrische Ladung beschreibt.
Kerr-Newman-Metrik

Die Kerr-Newman-Metrik beschreibt elektrisch geladene und rotierende Schwarze Löcher. Im Falle eines elektrisch neutralen Schwarzen Loches ( Q = 0 ) {\displaystyle (Q=0)} {\displaystyle (Q=0)} vereinfachen sich die Lösungen zur simpleren Kerr-Metrik bei J=0 zur Reissner-Nordström-Metrik und bei J = 0 {\displaystyle J=0} J=0 und Q = 0 {\displaystyle Q=0} Q=0 zur Schwarzschild-Metrik.
Sonstige Metriken
Gödel-Metrik

Die Gödel-Metrik wurde von Kurt Gödel im Jahr 1949 entwickelt. Sie beschreibt eine rotierende Raumzeit auf der Basis von Einsteins Feldgleichungen. Das Rotationszentrum ist an jedem Punkt der Raumzeit gleichermaßen vorhanden, dies fordert das kosmologische Prinzip. Eine Konsequenz aus seinem eher mathematischen Modell ist, dass klassische Weltlinien bei so einer Raumzeit auch in die Vergangenheit verlaufen können. Sein Modell erregte so viel Aufsehen, weil er bewies, dass Einsteins Feldgleichungen mathematisch gesehen Zeitreisen ermöglichen.
Kruskal-Lösung

Die Kruskal-Lösung ist eine maximale Erweiterung der Schwarzschild-Lösung. Sie weist intrinsische Singularitäten auf, weshalb sie nicht vollständig ist. Die Lösung kann als eine Beschreibung von Einstein-Rosen-Brücken bzw. Wurmlöchern angesehen werden (Näheres siehe Kruskal-Lösung).
Robertson-Walker-Metrik

Die Robertson-Walker-Metrik (auch „Friedmann-Lemaitre-Robertson-Walker-Metrik“ genannt) beschreibt ein homogenes Universum nach dem kosmologischen Prinzip. Sie wird als Näherung in einigen Urknalltheorien verwendet. Da das exakte Modell voraussetzen würde, dass sich keine Strukturen wie Galaxien und Sterne im Universum bilden könnten, verwendet man ein Fast-FLRM-Modell, das kleine Störungen bzw. Dichteschwankungen mit einberechnen kann.
De-Sitter-Raum

Der De-Sitter-Raum ist eine maximale symmetrische Vakuumlösung der Feldgleichungen, die eine positive kosmologische Konstante beinhaltet, also ist der Raum positiv gekrümmt. Er kann als Untermannigfaltigkeit zu einem höherdimensionalem Minkowski-Raum angesehen werden.

Der De-Sitter-Kosmos ist ein Modell, das diese Überlegungen beinhaltet. Wählt man eine Friedmann-Lösung mit verschwindender Krümmung ( k = 0 {\displaystyle k=0} k=0 in der Robertson-Walker-Metrik) und ohne Materie, ergibt sich als Lösung ein flacher, sich ausdehnender De-Sitter-Kosmos mit Radius R ( t ) ∼ e H t {\displaystyle R(t)\sim e^{Ht}} {\displaystyle R(t)\sim e^{Ht}} und der Hubble-Konstanten H = Λ / 3 . {\displaystyle H={\sqrt {\Lambda /3}}.} {\displaystyle H={\sqrt {\Lambda /3}}.}

Daher wird von den meisten Kosmologen angenommen, dass das Universum in seiner Anfangsphase ein De-Sitter-Raum gewesen sei, der sich ausbreitete (siehe Inflation). Der Kosmos könnte sich allerdings wieder so einem materiefreien Zustand annähern.
Anti-De-Sitter-Raum

Der Anti-de-Sitter-Raum ist das Gegenstück zum De-Sitter-Raum, hat also eine negative kosmologische Konstante und ist daher negativ gekrümmt. Der Raum ist so interessant, weil er besondere physikalische Eigenschaften besitzt und weil er oft mit dem holografischen Prinzip und der Stringtheorie in Verbindung gebracht wird.
Physikalische Effekte
→ Hauptartikel: Tests der allgemeinen Relativitätstheorie

Zur experimentellen Überprüfung der ART[15] reicht es nicht aus, Experimente durchzuführen, mit denen man zwischen der ART und der newtonschen Mechanik entscheiden kann, da es konkurrierende Theorien zur ART gibt. Es ist daher auch nötig, experimentell zwischen der ART und anderen Gravitationstheorien zu entscheiden. Abweichungen von den Vorhersagen der ART könnten auch ein neuer Anstoß zur Entwicklung einer schlüssigen und experimentell überprüfbaren Quantentheorie der Raumzeit sein.

Die allgemeine Relativitätstheorie sagt die experimentellen Ergebnisse im Rahmen der Messgenauigkeit richtig voraus. Das Äquivalenzprinzip ist mit einer Messgenauigkeit von bis zu 10−13 bestätigt.[16] für andere Phänomene der ART bis zu 10−5.[17] Im Folgenden werden einige physikalische Phänomene erklärt, deren genaue experimentelle Überprüfung bisher die ART gut bestätigt und den Spielraum für Alternativtheorien sehr verkleinert hat. Außerdem lassen die guten Übereinstimmungen von Experiment und Vorhersage erwarten, dass Quanteneffekte der Gravitation sehr klein sind, da sie als Abweichungen von den Vorhersagen der ART erkennbar sein müssten.
Gravitative Zeitdilatation und Rotverschiebung
Gravitative Rotverschiebung einer Lichtwelle

Die gravitative Zeitdilatation folgt bereits aus der speziellen Relativitätstheorie und dem Äquivalenzprinzip der ART. Sie wurde von Einstein 1908 vorhergesagt.[1] Wenn man eine in einem Gravitationsfeld ruhende Uhr betrachtet, muss sie durch eine Gegenkraft in Ruhe gehalten werden, wie ein Mensch, der auf der Erdoberfläche steht. Sie wird also fortwährend beschleunigt, sodass man die Formel für die Zeitdilatation in einem beschleunigten Bezugsystem aus der speziellen Relativitätstheorie benutzen kann. Dies hat zur Folge, dass der Effekt nicht symmetrisch ist, wie man es von zwei gleichförmig bewegten Bezugsystemen in der speziellen Relativitätstheorie kennt. Ein Beobachter im Weltall sieht also die Uhren auf der Erde langsamer gehen als seine eigene Uhr. Umgekehrt sieht ein Beobachter auf der Erde Uhren im Weltall schneller gehen als seine eigene Uhr. Mit sehr genauen optischen Atomuhren lässt sich die gravitative Zeitdilatation auch noch bei einem Höhenunterschied nur einiger Zentimeter messen.[18]

Eine direkte Folge der Zeitdilatation ist die gravitative Rotverschiebung. Sie wurde von Einstein bereits 1911 vor Fertigstellung der allgemeinen Relativitätstheorie vorausgesagt. Da beide Effekte bereits aus dem Äquivalenzprinzip hergeleitet werden können, ist ihre experimentelle Bestätigung für sich genommen keine Bestätigung für die Gültigkeit der ART. Würde jedoch ein von der Vorhersage abweichendes Verhalten beobachtet, würde dies die ART widerlegen. Die experimentelle Bestätigung der Effekte ist also für die Gültigkeit der Theorie notwendig, wenn auch nicht hinreichend.

Die Rotverschiebung bedeutet, dass Licht, das von einer Lichtquelle mit einer gegebenen Frequenz nach „oben“ (also vom Gravitationszentrum weg) ausgestrahlt wird, dort mit einer geringeren Frequenz gemessen wird, ähnlich wie beim Doppler-Effekt. Demnach ist bei einem Lichtsignal mit einer bestimmten Anzahl von Schwingungen der zeitliche Abstand zwischen dem Beginn und dem Ende des Signals beim Empfänger größer als beim Sender. Die gravitative Rotverschiebung wurde erstmals 1960 im Pound-Rebka-Experiment nachgewiesen.
Lichtablenkung und Lichtverzögerung
→ Hauptartikel: Gravitationslinseneffekt und Shapiro-Verzögerung
Simulation der Ablenkung des Lichts eines Sterns (rot) im Gravitationsfeld eines Neutronensterns (blau).

Licht nahe einer großen Masse bewegt sich aus Sicht eines entfernten Beobachters langsamer als mit Vakuumlichtgeschwindigkeit. Dieses Phänomen wird nach seinem Entdecker als Shapiro-Verzögerung bezeichnet. Außerdem nimmt ein entfernter Beobachter eine Ablenkung des Lichts nahe großen Massen wahr. Diese beiden Effekte gehen auf dieselbe Erklärung zurück. Die reale Zeit, die sogenannte Eigenzeit, ist nahe der Masse verschieden vom Zeitbegriff des entfernten Beobachters. Außerdem hat die Masse auch Auswirkungen auf das Verhalten des Raums, ähnlich einer Lorentzkontraktion, was sich nur im Rahmen der ART und nicht klassisch erklären lässt. Diese beiden Effekte sind für kleine Massen etwa gleich groß und addieren sich. Ein Beobachter, der sich selbst nahe der Masse befindet, wird dementsprechend die Vakuumlichtgeschwindigkeit als Geschwindigkeit des Lichtstrahls messen. Der entfernte Beobachter nimmt jedoch eine verringerte Geschwindigkeit wahr, die er als ortsabhängigen Brechungsindex beschreiben kann. Diese Beschreibung liefert auch eine Erklärung für die Lichtablenkung, die als eine Art Brechung interpretiert werden kann.

Die obige Erklärung beruht auf einer Analogie. Die abstrakte Interpretation im Rahmen der ART ist, dass die Nullgeodäten, auf denen sich Licht bewegt, nahe großen Massen im Raum gekrümmt erscheinen. Es ist dabei zu berücksichtigen, dass das Licht sich auch in der Zeit bewegt, sodass hier tatsächlich eine Raumzeitkrümmung und keine reine Krümmung des dreidimensionalen Raumes vorliegt.

Der Ablenkwinkel α ablenk {\displaystyle \alpha _{\text{ablenk}}} \alpha _{{\text{ablenk}}} ist von der Masse M {\displaystyle M} M der Sonne, dem Abstand r {\displaystyle r} r vom sonnennächsten Punkt der Bahn zum Mittelpunkt der Sonne und der Lichtgeschwindigkeit c {\displaystyle c} c abhängig. Er kann nach der Gleichung

α ablenk = 4 G M r c 2 = 4 r G r {\displaystyle \alpha _{\text{ablenk}}\,=\,{\frac {4G\,M}{rc^{2}}}\,=\,{\frac {4r_{G}}{r}}} \alpha _{{\text{ablenk}}}\,=\,{\frac {4G\,M}{rc^{2}}}\,=\,{\frac {4r_{G}}{r}}

berechnet werden. Darin ist G {\displaystyle G} G die Gravitationskonstante und r G {\displaystyle r_{G}} r_{G} der Gravitationsradius.

Auf Ablenkung von Licht im Gravitationsfeld beruht auch der in der Astronomie beobachtete Gravitationslinseneffekt.
Periheldrehung
→ Hauptartikel: Apsidendrehung
Die Periheldrehung der Bahn eines Planeten. Die Exzentrizität der Bahn und der Betrag der Drehung sind gegenüber der realen Periheldrehung des Merkur schematisch übertrieben.

Die Periheldrehung der Planetenbahnen - z. B. der Bahn der Erde um die Sonne - ist ein Effekt, der zum größten Teil durch die Gravitationskraft anderer Planeten (z. B. des Jupiter) entsteht. Beim Merkur misst man 571″ pro Jahrhundert, von denen 43,3″ nicht aus diesen Störungen resultieren. Die Relativitätstheorie konnte diesen Wert erklären, was ein erster Erfolg der Theorie war. Die Periheldrehung der Erde ist mit 1161″ pro Jahrhundert noch größer als die des Merkur, der relativistische Fehlbetrag beträgt bei der Erde aber lediglich 5″. Auch die gemessenen Fehlbeiträge zur Periheldrehung anderer Planeten sowie auch des Kleinplaneten Icarus stimmen mit den Vorhersagen der Relativitätstheorie überein. Die in Planung befindliche europäisch-japanische Merkursonde BepiColombo soll es ermöglichen, die Bewegung des Merkur mit bisher unerreichter Genauigkeit zu bestimmen und damit Einsteins Theorie noch genauer zu testen.

Bei Doppelsternsystemen aus Sternen oder Pulsaren, die einander in sehr geringer Entfernung umkreisen, ist die Periheldrehung mit mehreren Grad pro Jahr deutlich größer als bei den Planeten des Sonnensystems. Auch die bei diesen Sternsystemen indirekt gemessenen Werte der Periheldrehung stimmen mit den Vorhersagen der ART überein.
Gravitationswellen
→ Hauptartikel: Gravitationswelle
Ein Ring von Testpartikeln unter dem Einfluss einer Gravitations­welle
Zweidimensionale Darstellung von Gravitationswellen, die von zwei einander umkreisenden Neutronensternen ausgesandt werden.

Die ART ermöglicht die Beschreibung von Fluktuationen der Raumzeitkrümmung, die sich mit Lichtgeschwindigkeit ausbreiten. In erster Näherung sind diese Fluktuationen mit transversalen Wellen vergleichbar, daher werden sie als Gravitationswellen bezeichnet. Eine Beschreibung dieses Phänomens ohne Näherungen existiert bisher (2016) nicht. Gravitationswellen wären dadurch beobachtbar, dass sich quer (transversal) zu ihrer Ausbreitungsrichtung der Raum periodisch ausdehnt und zusammenzieht. Da es bei der Gravitation keine positive und negative Ladung wie beim Elektromagnetismus gibt, können Gravitationswellen nicht als Dipolstrahlung, sondern nur als Quadrupolstrahlung auftreten.[19] Außerdem ist die Kopplung der Gravitation an Materie sehr viel schwächer als beim Elektromagnetismus.

Daraus folgt eine sehr geringe Intensität der Gravitationswellen, was den Nachweis sehr erschwert. Das erwartete Verhältnis von Längenveränderung zur betrachteten Strecke liegt in der Größenordnung von 10−21, das entspricht etwa einem Tausendstel Protondurchmesser pro Kilometer. Aufgrund dieser Schwierigkeiten ist erst am 14. September 2015 der direkte Nachweis von Gravitationswellen gelungen.

Einen indirekten Nachweis von Gravitationswellen gibt es bereits länger, denn bei einander umkreisenden Sternen führen die Gravitationswellen zu einem Energieverlust des Sternensystems. Dieser Energieverlust äußert sich in einer Abnahme der Rotationsgeschwindigkeit, die zum Beispiel am Doppelsternsystem PSR 1913+16 beobachtet wurde.[20]
Schwarze Löcher
→ Hauptartikel: Schwarzes Loch

Eine Lösung der ART sagt voraus, dass ein äußerst kompakter Körper die Raumzeit so stark krümmt, dass sich eine Raumregion bildet, aus der kein Licht und damit auch keine Materie mehr entkommen kann. Ein solches Objekt wird als Singularität bezeichnet und wurde erstmals 1916 von Karl Schwarzschild durch die Schwarzschild-Metrik beschrieben. Die Oberfläche, bei deren Überschreiten ein Lichtstrahl nicht mehr entkommen kann, wird als Ereignishorizont bezeichnet. Da ein Schwarzes Loch kein Licht aussenden oder reflektieren kann, ist es unsichtbar und kann nur indirekt über die Effekte der enormen Raumzeitkrümmung beobachtet werden.
Lense-Thirring-Effekt
→ Hauptartikel: Lense-Thirring-Effekt

Im Jahr 1918 wurde von dem Mathematiker Josef Lense und dem Physiker Hans Thirring der nach ihnen benannte Lense-Thirring-Effekt (auch Frame-Dragging-Effekt) theoretisch vorhergesagt. Der Effekt beschreibt die Beeinflussung des lokalen Inertialsystems durch eine rotierende Masse, was man sich vereinfacht so vorstellen kann, dass die rotierende Masse die Raumzeit um sich herum wie eine zähe Flüssigkeit geringfügig mitzieht und dadurch verdrillt.

Derzeit wird noch diskutiert, ob den Wissenschaftlern um Ignazio Ciufolini von der Universität Lecce und Erricos Pavlis von der University of Maryland in Baltimore im Jahr 2003 der experimentelle Nachweis des Effektes gelungen ist. Sie vermaßen dafür die Bahnen der geodätischen Satelliten LAGEOS 1 und 2 präzise, da deren Position und Lage von der Masse der sich drehenden Erde beeinflusst werden sollte. Aufgrund möglicher Fehlerquellen durch das uneinheitliche Schwerefeld der Erde ist umstritten, ob die zentimetergenauen Positionsbestimmungen der LAGEOS-Satelliten ausreichten, um diesen relativistischen Effekt nachzuweisen.

Der NASA-Satellit Gravity Probe B, gestartet im April 2004, ist mit mehreren präzisen Gyroskopen ausgestattet, welche den Effekt sehr viel genauer vermessen können. Zur Messung des Effektes werden bei diesem Satelliten die Änderungen der Drehrichtungen von vier Gyroskopen bestimmt.
Kosmologie
→ Hauptartikel: Kosmologie

Die Kosmologie ist ein Teilgebiet der Astrophysik, das sich mit dem Ursprung und der Entwicklung des Universums befasst. Da die Entwicklung des Universums maßgeblich durch die Gravitation bestimmt ist, ist die Kosmologie eines der Hauptanwendungsgebiete der ART. Im Standardmodell der Kosmologie wird das Universum als homogen und isotrop angenommen. Mit Hilfe dieser Symmetrien vereinfachen sich die Feldgleichungen der ART zu den Friedmann-Gleichungen. Die Lösung dieser Gleichungen für ein Universum mit Materie implizieren eine Phase der Expansion des Universums. Dabei ist das Vorzeichen der Skalarkrümmung auf kosmischer Skala entscheidend für die Entwicklung eines expandierenden Universums.

Bei einer positiven Skalarkrümmung wird das Universum zunächst expandieren und sich dann wieder zusammenziehen, bei verschwindender Skalarkrümmung wird die Expansionsgeschwindigkeit einen festen Wert annehmen, und bei negativer Skalarkrümmung wird das Universum beschleunigt expandieren.

Einstein fügte 1917 die kosmologische Konstante Λ in die Feldgleichungen ein, um ein Modell eines statischen Kosmos zu ermöglichen. Die kosmologische Konstante kann je nach Vorzeichen die kosmische Expansion verstärken oder ihr entgegenwirken.

Astronomische Beobachtungen haben inzwischen das relativistische Weltmodell erheblich verfeinert und genaue quantitative Messungen der Eigenschaften des Universums gebracht. Beobachtungen entfernter Supernovae vom Typ 1a haben ergeben, dass das Universum beschleunigt expandiert. Messungen der räumlichen Struktur der Hintergrundstrahlung mit WMAP zeigen, dass die Skalarkrümmung innerhalb der Fehlergrenzen verschwindet. Diese und weitere Beobachtungen führen zu einer positiven, von null verschiedenen, kosmologischen Konstante. Die derzeitigen Erkenntnisse über die Struktur des Universums werden im Lambda-CDM-Modell zusammengefasst.
Verhältnis zu anderen Theorien
Klassische Physik

Die ART muss das newtonsche Gravitationsgesetz als Grenzfall enthalten, denn dieses ist für langsam bewegte und nicht zu große Massen gut bestätigt. Große Massen bewirken dagegen große Gravitationsbeschleunigungen an ihrer Oberfläche, die zu relativistischen Effekten wie Zeitdilatation und Lorentzkontraktion führen. Daher braucht für diese das newtonsche Gravitationsgesetz nicht zu gelten.

Auf der anderen Seite muss auch die spezielle Relativitätstheorie in Raumzeitgebieten, in denen die Gravitation vernachlässigbar ist, in der ART enthalten sein. Das bedeutet, dass für den Grenzfall einer verschwindenden Gravitationskonstante G die spezielle Relativitätstheorie reproduziert werden muss. In der Nähe von Massen gilt sie nur noch in differentiell kleinen Raumgebieten bei kleinen Zeitintervallen.

Die Forderung, dass die Gleichungen der ART die beiden oben genannten Grenzfälle erfüllen müssen, bezeichnet man als Korrespondenzprinzip. Dieses Prinzip besagt, dass die Gleichungen veralteter Theorien, die in einem bestimmten Gültigkeitsbereich gute Ergebnisse liefern, für diesen Gültigkeitsbereich als Grenzfall in der neuen Theorie enthalten sein müssen. Einige Autoren gehen unter diesem Begriff in Bezug auf die ART nur auf einen der beiden Grenzfälle, meist bezüglich der newtonschen Gravitationstheorie, ein.

Die Bewegungsgleichungen klassischer, also nicht quantenmechanischer, Feldtheorien ändern sich gegenüber der klassischen Mechanik, wie oben beschrieben wurde. Es ist also ohne Probleme möglich, gravitative und elektromagnetische Wechselwirkung geladener Objekte gleichzeitig zu beschreiben. Insbesondere ist es möglich, eine nichtrelativistische (d. h. newtonsche, d h. naturgemäß unvollständige) möglichst optimale Näherung für die ART anzugeben. Darüber hinaus gibt es eine post-newtonsche Näherung an die Allgemeine Relativitätstheorie, die Terme der Erzeugung der Gravitationsfelder gemäß der Einsteinschen Theorie einschließt und sich darin von den post-newtonschen Näherungen anderer metrischer Theorien der Gravitation unterscheidet und so zu deren experimenteller Unterscheidung dienen kann.[21]
Quantenphysik

Die ART ist bei sehr hohen Teilchenenergien im Bereich der Planck-Skala oder entsprechend bei sehr kleinen Raumzeitgebieten mit starker Krümmung nicht mit der Quantenphysik vereinbar. Obwohl es keine Beobachtung gibt, die der ART widerspricht und ihre Vorhersagen gut bestätigt sind, liegt daher nahe, dass es eine umfassendere Theorie gibt, in deren Rahmen die ART ein Spezialfall ist. Dies wäre also eine Quantenfeldtheorie der Gravitation, die eine Vereinigung der ART mit der Quantenfeldtheorie darstellt.

Die Formulierung einer Quantenfeldtheorie der Gravitation wirft jedoch Probleme auf, die mit den bisher bekannten mathematischen Methoden nicht lösbar sind. Das Problem besteht darin, dass die ART als Quantenfeldtheorie nicht renormierbar ist. Die Größen, die sich daraus berechnen lassen, sind also unendlich. Diese Unendlichkeiten können als prinzipielle Schwäche im Formalismus der Quantenfeldtheorien verstanden werden, und sie lassen sich bei anderen Theorien meist durch Renormierungsverfahren von den physikalisch sinnvollen Ergebnissen trennen. Bei der ART ist das aber mit den üblichen Verfahren nicht möglich, sodass unklar ist, wie man physikalisch sinnvolle Vorhersagen treffen soll.

Die aktuell (2015) am meisten diskutierten Ansätze zur Lösung dieses Problems sind die Stringtheorie und die Schleifenquantengravitation. Es existiert eine Vielzahl weiterer Modelle, die allerdings nicht so bekannt sind.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik Do Okt 20, 2016 1:21 pm

[quote="Johannes.von.Nepomuk22"]
Skeptik schrieb:Wer fand vor 101 Jahren nicht nur eine geniale Formel. sondern konnte sie auch noch genial anschaulich erklären: „Wenn man zwei Stunden lang mit einem Mädchen zusammensitzt, meint man, es wäre eine Minute. Sitzt man jedoch eine Minute auf einem heißen Ofen, meint man, es wären zwei Stunden.“

Wie heißt der Mann. Wie heißt die Theorie?

Albert Einstein.

Genau er ist gemeint. Und für den zweiten Teil der Antwort hast du gleich den gesamten "Hammer" von Wiki eingestellt. Das hat einmal mehr gezeigt, daß mit dem Nennen eines Schlagwortes, hier "Relativitätstheorie", noch nichts an Erkenntnis gewonnen ist. Auch ich bleibe in Raum und Zeit nur an dem Mädchen hängen. Sie scheint mir vertraut und ich finde Hinweise:

"Energie und Impuls der Materie beeinflussen die Geometrie der Raumzeit, in der sie sich befinden. Dieser Einfluss lässt sich über einen allgemeinen Krümmungsbegriff formulieren,"

Ich sitze neben ihr und es bewahrheitet sich auch hier:

"Die kovariant, also im Sinne des allgemeinen Relativitätsprinzips, geschriebenen Gleichungen ergeben für die Sterne also überlichtschnelle Kreisbewegungen, stehen aber dennoch im Einklang mit den Prinzipien der speziellen Relativitätstheorie. Dies wird auch dadurch klar, dass es unmöglich ist, dass ein Beobachter in der Nähe eines Sterns im rotierenden Koordinatensystem ruht und also dem Stern mit Überlichtgeschwindigkeit begegnet. Dieser Beobachter hat also zwangsweise ein anderes Koordinatensystem als der rotierende Beobachter und misst die „richtige“ Lichtgeschwindigkeit."

Ich bin verwirrt und kann nur stammeln:

Dμ - F μ ν = 4 π J ν D μ F ν ρ + D ν F ρ μ + D ρ F μ ν = ∂ μ F ν ρ + ∂ ν F ρ μ + ∂ ρ F μ ν = 0 {\displaystyle D_{\mu }F^{\mu \nu }=4\pi J^{\nu }\qquad \qquad D_{\mu }F_{\nu \rho }+D_{\nu }F_{\rho \mu }+D_{\rho }F_{\mu \nu }=\partial _{\mu }F_{\nu \rho }+\partial _{\nu }F_{\rho \mu }+\partial _{\rho }F_{\mu \nu }=0} D_{{\mu }}F^{{\mu \nu }}=4\pi J^{{\nu }}\qquad \qquad D_{{\mu }}F_{{\nu \rho }}+D_{{\nu }}F_{{\rho \mu }}+D_{{\rho }}F_{{\mu \nu }}=\partial _{{\mu }}F_{{\nu \rho }}+\partial _{{\nu }}F_{{\rho \mu }}+\partial _{{\rho }}F_{{\mu \nu }}=0


Danke, Johannes, it's your turn!

Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Do Okt 20, 2016 1:29 pm

OK.

Dann wollen wir mal wieder bisschen übers Wetter denken.

Wann waren und wo waren die Stärksten Regenfälle in Deutschland mit großen Wirtschaftlichen folgen ?

Da es schwer ist, ein kleiner Tipp, es ist erst wenige Jahre her.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Wallenstein Fr Okt 21, 2016 10:54 am

Statt wieder über das Wetter zu fabulieren, sollten wie noch einmal über die Relativitätstheorie sprechen. Statt einen Artikel komplett aus Wikipedia zu kopieren, macht es meines Erachtens mehr Sinn, lediglich einen Link zu setzen. Diesen Artikel versteht man als Nicht-Physiker nicht und Nepomuk mit Sicherheit auch nicht, sonst hätte er ihn in eigenen Worten wiedergegeben.

Ich bin kein Physiker, musste nur nebenbei einige Scheine machen. Über die Relativitätstheorie habe ich nur wenige Kenntnisse.

Meines Erachtens wurde aber die Frage von Skeptik nicht ganz korrekt gestellt und auch nicht korrekt beantwortet. Das Beispiel mit dem Mädchen und dem Ofen bezieht sich meines Wissens nicht auf die Allgemeine Relativitätstheorie aus dem Jahre 1915, sondern auf die Spezielle Relativitätstheorie aus dem Jahre 1905.

Die Kernaussage der Speziellen Relativitätstheorie lautet: Die Gesetze der Physik gelten für jedermann, egal, ob und wie er sich durch das Universum bewegt. Die wichtigste Konsequenz daraus ist die Konstanz der Lichtgeschwindigkeit, mit c benannt, 300.000 km/sec.

Man stelle sich ein Auto vor, das mit einer Geschwindigkeit von 100 km/h auf einen zufährt. Man könnte meinen, die Geschwindelt des Lichts würde jetzt betragen c + 100km/h. Das ist aber nicht der Fall, ob sich das Auto nähert oder entfernt, die Lichtgeschwindigkeit ändert sich nicht. Das Spektakuläre dabei ist, das sich die Bedingungen, wenn es erforderlich ist, verändern können, alles außer der Lichtgeschwindigkeit. Auch die Zeit kann sich demzufolge verändern.

Das führt zu so verblüffenden Ergebnissen, dass jemand in einem Raumschiff, welches sich mit fast Lichtgeschwindigkeit bewegt, kaum altert, während im gleichen Zeitraum auf der Erde hunderte von Jahren vergehen.

Auch die Formel E = mc² stammt aus der Speziellen Relativitätstheorie und ist somit 111 Jahre alt. Einstein beendete damit den alten Streit zwischen Newton und Leibnitz. Newton hatte die Energie eines bewegten Körpers definiert als Produkt von Masse m und Geschwindelt v. Zwei Körper mit gleicher Masse, die sich in entgegengesetzter Richtung bewegen und zusammen stoßen führen dazu, dass sich die Energie gegenseitig aufhebt und verschwindet. Leibnitz hingegen behauptete, richtig sei mv².

Das macht einen riesigen Unterschied, denn bei Leibnitz sind es Quadrate und die sind immer positiv. Stoßen die Massen zusammen, verschwindet die Energie nicht, sondern wird nur umgewandelt. Aus kinetischer Energie wird Wärmeenergie. Damit hatte Leibnitz Recht behalten, was ich ihm gönne, denn Newton war bei aller Genialität ein äußerst unangenehmer Zeitgenosse.

Einstein hatte nun erkannt, dass auch Masse eine Form von Energie ist und setzte statt v² die Lichtgeschwindigkeit c². Warum das geht, will ich jetzt nicht näher erläutern.

Die Theorie von Einstein ist schwer zu verstehen, weil sie in ungewohnte Dankbahnen vorstößt. Als Einstein Anfang der dreißiger Jahre in die USA emigrierte, erzählte er pausenlos allen Passagieren seine Theorie und diese waren schließlich der Meinung, dass zumindest Einstein sie verstanden hatte.

Wallenstein
Gründungsmitglied
Gründungsmitglied

Anzahl der Beiträge : 872
Anmeldedatum : 03.02.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Fr Okt 21, 2016 11:17 am

@Wallenstein

Dieser Thread ist nur dafür gedacht RÄTSEL zu Lösen !

Du kannst dich natürlich gerne daran beteidigen, aber bitte keine Rückständigen Antworten für Diskusionen nutzen. Dafür können wir den Text verlinken von dir.

Da ich das letzte Rätsel gelöst habe und eine Frage gestellt habe zum nächsten Rätsel MUSS diese auch erst Beantwortet werden.

Wenn du ein/das Rätsel gelöst hast oder später mal ein Rätsel löst, darfst du gerne deine Frage stellen. Nur bitte nicht zwischen den Rätselfragen, alte Fragen hier in diesem Thread zur Diskusion aufleben lassen. Danke.

Ich werde mal dein Bericht gesondert in einem neuen Thread eröffnen.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Ceres Fr Okt 21, 2016 1:12 pm

Lieber Johannes, bitte seh es nicht so verbissen mit unseren Wallenstein. Er weis es sicher über die Teilnahme der Rätselecke bescheid. Ich nehme an, dass es ihm nur daran lag, etwas zum Verständnis hinzuzufügen.

Das war mal jetzt OT, also warten wir mal auf das nächste Rätsel.

lg Ceres Smile
Ceres
Ceres

Anzahl der Beiträge : 2899
Anmeldedatum : 08.05.16

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik Fr Okt 21, 2016 5:13 pm

Ceres schrieb:
Das war mal jetzt OT, also warten wir mal auf das nächste Rätsel.
lg Ceres Smile

Du siehst, liebe Ceres, das gibt eben Schlamassel. Das letzte Rätsel ist noch nicht gelöst.

Ich tippe mal auf das dadurch ausgelöste Hochwasser 2002. Bayern, Sachsen waren wohl am meisten betroffen. Aber auch andere Bundesländer.
Hier sieht man an den Hochwassermarken wie weit man zurückschauen muß um eine ähnliche Katastrophe zu finden:

https://upload.wikimedia.org/wikipedia/commons/0/04/Hochwassermarken_in_Steyr.jpg

https://de.wikipedia.org/wiki/Hochwasser_in_Mitteleuropa_2002#/media/File:Bad_Schandau-140419s-015.JPG


Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk Sa Okt 22, 2016 12:11 am

Skeptik schrieb:
Ceres schrieb:
Das war mal jetzt OT, also warten wir mal auf das nächste Rätsel.
lg Ceres Smile

Du siehst, liebe Ceres, das gibt eben Schlamassel. Das letzte Rätsel ist noch nicht gelöst.

Ich tippe mal auf das dadurch ausgelöste Hochwasser 2002. Bayern, Sachsen waren wohl am meisten betroffen. Aber auch andere Bundesländer.
Hier sieht man an den Hochwassermarken wie weit man zurückschauen muß um eine ähnliche Katastrophe zu finden:

https://upload.wikimedia.org/wikipedia/commons/0/04/Hochwassermarken_in_Steyr.jpg

https://de.wikipedia.org/wiki/Hochwasser_in_Mitteleuropa_2002#/media/File:Bad_Schandau-140419s-015.JPG


Skeptik hat Gewonnen. Gut.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik Sa Okt 22, 2016 5:03 pm

Es war einmal, so ist es gewesen, ein Junge, der lebte mit seiner Familie in Frankfurt in einer „scheußlichen, schmalen und schmutzigen Straße“ in einem engen Hinterhaus. Mit 13 Jahren starben seine Eltern und so mußte der Waisenknabe zusehen, wie er alleine weiterkam. Er erlernte den Münzenhandel und heiratete mit 26 Jahren ein 16jähriges Mädchen. In den folgenden 21 Ehejahren gebar sie ihm zwanzig Kinder von denen zehn am Leben blieben. Er war nicht besonders reich als er starb, wurde aber posthum in den Adelsstand erhoben. Die Kinder zerstreuten sich in alle Welt und wenn sie nicht gestorben sind, dann leben sie heute noch.

Wer war der arme Waisenknabe in diesem wahren Märchen aus dem 18. Jahrhundert?

Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk So Okt 23, 2016 7:19 am

Skeptik schrieb:Es war einmal, so ist es gewesen, ein Junge, der lebte mit seiner Familie in Frankfurt in einer „scheußlichen, schmalen und schmutzigen Straße“ in einem engen Hinterhaus. Mit 13 Jahren starben seine Eltern und so mußte der Waisenknabe zusehen, wie er alleine weiterkam. Er erlernte den Münzenhandel und heiratete mit 26 Jahren ein 16jähriges Mädchen. In den folgenden 21 Ehejahren gebar sie ihm zwanzig Kinder von denen zehn am Leben blieben. Er war nicht besonders reich als er starb, wurde aber posthum in den Adelsstand erhoben. Die Kinder zerstreuten sich in alle Welt und wenn sie nicht gestorben sind, dann leben sie heute noch.

Wer war der arme Waisenknabe in diesem wahren Märchen aus dem 18. Jahrhundert?

Mayer Amschel Rothschild. Heiratete Gutle Schnapper. Und deren Nachkommen, haben heute immensen Weltweiten Einfluß. Mit einer der mächtigsten Familien der Welt.

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Skeptik So Okt 23, 2016 9:09 am

Das ging aber schnell! Richtig! Und diese 16jährige Gutle Schnapper wurde nach all der Plackerei dann noch 96 Jahre alt.

Skeptik

Anzahl der Beiträge : 1364
Anmeldedatum : 01.10.15
Alter : 85

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Wallenstein So Okt 23, 2016 12:28 pm

@Nepomuk:
Dieser Thread ist nur dafür gedacht RÄTSEL zu Lösen !

Du kannst dich natürlich gerne daran beteidigen, aber bitte keine Rückständigen Antworten für Diskusionen nutzen. Dafür können wir den Text verlinken von dir.
Da ich das letzte Rätsel gelöst habe und eine Frage gestellt habe zum nächsten Rätsel MUSS diese auch erst Beantwortet werden.


Nein, du hast das Rätsel nicht gelöst! Die richtige Antwort wäre gewesen: Einsteins Spezielle Relativitätstheorie. Du hast lediglich einen Artikel aus Wikipedia über die Allgemeine Relativitätstheorie kopiert, allerdings ohne ihn zu verstehen. Du hast nur einen Teil richtig gelöst, nämlich den Namen Einstein. Den Namen der Theorie hast du aber nicht richtig beantwortet. Warum meine Antwort richtig ist und nicht deine, habe ich ja ausführlich beschrieben. Schon die Fragestellung von Skeptik war nicht ganz korrekt, worauf du hättest hinweisen müssen.

(In dem obigen Satz hast du gleich drei Rechtschreibfehler gemacht: Es heißt „beteiligen“ und nicht „beteidigen“. Auch nicht „Diskusionen“ sondern „Diskussionen“ und nicht die „Rückständigen Antworten“, sondern die „rückständigen Antworten“. ) Nicht schlecht, alle Achtung. (Beantwortet wird übrigens auch klein geschrieben, nur nebenbei erwähnt).

Also bin ich jetzt dran:
Mein Rätsel lautet: Welcher Regierungschef im Nahen Osten bekam schon früh den Spitznamen „Giraffe“?

Wallenstein
Gründungsmitglied
Gründungsmitglied

Anzahl der Beiträge : 872
Anmeldedatum : 03.02.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von van Kessel So Okt 23, 2016 1:04 pm

ich denke, es ist Baschar Hafiz al-Assad.

Aber was anderes. Ist es notwendig, hier einen solchen Ton einzubringen, welcher den Oberlehrer heraushängt? Die Bestätigung eines Rätsels, sollte es damit auch abschliessen (es sei, die Erklärung wäre in allen Punkten falsch).

Eine gewissen Gelassenheit bei allen Äusserungen ist anzustreben. In Fachthemen mag diskutiert werden. Hier, bei diesem Entspannungsthema nicht.

van Kessel

Anzahl der Beiträge : 445
Anmeldedatum : 16.03.16

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Wallenstein So Okt 23, 2016 1:51 pm

Die Antwort ist richtig!

Und sonst: Ich bin halt manchmal ein wenig cholerisch. Hat sich aber schon erheblich gebessert. Als ich noch im Berufsleben stand, habe ich meine Mitarbeiter ständig bei Fehlern herunter geputzt und manche Frau hat tränenüberströmt mein Büro verlassen, wenn ich einen Wutanfall bekam, weil schon wieder etwas verbockt wurde. Ich bin nun aber viel ruhiger.


Wallenstein
Gründungsmitglied
Gründungsmitglied

Anzahl der Beiträge : 872
Anmeldedatum : 03.02.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Ceres So Okt 23, 2016 2:15 pm

van Kessel schrieb:

Aber was anderes. Ist es notwendig, hier einen solchen Ton einzubringen, welcher den Oberlehrer heraushängt? Die Bestätigung eines Rätsels, sollte es damit auch abschliessen (es sei, die Erklärung wäre in allen Punkten falsch).
Eine gewissen Gelassenheit bei allen Äusserungen ist anzustreben. In Fachthemen mag diskutiert werden. Hier, bei diesem Entspannungsthema nicht.

Ich möchte hierzu mal kurz was sagen: Ist es ein Problem, dass unser Wallenstein auf Fehlern hingewiesen hat? Aber abgesehen davon... Wenn ich manchmal hier Texte lese und feststellen muss,
das in einem Satz 3 - 4 Fehler vorkommen, muss ich schon sagen, das es manchmal schon echt anstrengend werden kann, diese überhaupt zu lesen..

Ich sehe somit kein Problem bei Wallensteins Hinweise..

Nix für ungut, aber nun weiter mit dem fröhlichen Rätselraten ♥

lg Ceres
Ceres
Ceres

Anzahl der Beiträge : 2899
Anmeldedatum : 08.05.16

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Nepomuk So Okt 23, 2016 2:24 pm

Wallenstein schrieb:@Nepomuk:
Dieser Thread ist nur dafür gedacht RÄTSEL zu Lösen !

Du kannst dich natürlich gerne daran beteidigen, aber bitte keine Rückständigen Antworten für Diskusionen nutzen. Dafür können wir den Text verlinken von dir.
Da ich das letzte Rätsel gelöst habe und eine Frage gestellt habe zum nächsten Rätsel MUSS diese auch erst Beantwortet werden.


Nein, du hast das Rätsel nicht gelöst! Die richtige Antwort wäre gewesen: Einsteins Spezielle Relativitätstheorie. Du hast lediglich einen Artikel aus Wikipedia über die Allgemeine Relativitätstheorie kopiert, allerdings ohne ihn zu verstehen. Du hast nur einen Teil richtig gelöst, nämlich den Namen Einstein. Den Namen der Theorie hast du aber nicht richtig beantwortet. Warum meine Antwort richtig ist und nicht deine, habe ich ja ausführlich beschrieben. Schon die Fragestellung von Skeptik war nicht ganz korrekt, worauf du hättest hinweisen müssen.

(In dem obigen Satz hast du gleich drei Rechtschreibfehler gemacht: Es heißt „beteiligen“ und nicht „beteidigen“. Auch nicht „Diskusionen“ sondern „Diskussionen“ und nicht die „Rückständigen Antworten“, sondern die „rückständigen Antworten“. ) Nicht schlecht, alle Achtung. (Beantwortet wird übrigens auch klein geschrieben, nur nebenbei erwähnt).

Also bin ich jetzt dran:
Mein Rätsel lautet: Welcher Regierungschef im Nahen Osten bekam schon früh den Spitznamen „Giraffe“?

@Wallenstein
Du kannst dir auf deine Richtige Antwort genüßlich einen W*****, dass ist mir Scheiß Egal. Dieses Forum ist für mich jetzt Gestorben !

Ich bin jetzt auch WEG...und ich werde auch nicht mehr wiederkommen...
ebenfalls genau wie Delta01, Tammuz, Marylinjackson  und andere !
Macht keinen Sinn hier, sich mit frustrierten Rentnern abzugeben !
---------------------------------------------------------------
Schade Marek... Du warst mir von allen am Sympathischsten. Aber du weist selbst was hier los ist...

...und Tschüs

Nepomuk
inaktiv

Anzahl der Beiträge : 153
Anmeldedatum : 06.11.15

Nach oben Nach unten

Rätsel mit geschichtlichen Hintergrund - Seite 9 Empty Re: Rätsel mit geschichtlichen Hintergrund

Beitrag von Gesponserte Inhalte


Gesponserte Inhalte


Nach oben Nach unten

Seite 9 von 40 Zurück  1 ... 6 ... 8, 9, 10 ... 24 ... 40  Weiter

Nach oben

- Ähnliche Themen

 
Befugnisse in diesem Forum
Sie können in diesem Forum nicht antworten